doi:10.3788/gzxb20144312.1204001

基于小波 Fisz 变换的 X 射线脉冲星信号降噪研究

刘秀平1,景军锋1,孙海峰2,韩丽丽3

(1 西安工程大学 电子信息学院,西安 710048)(2 西安电子科技大学 空间科学与技术学院,西安 710071)(3 西安交通工程学院,西安 710065)

摘 要:针对X射线脉冲星信号信噪比低,难以获取精确脉冲星信号相位的问题,提出了基于 Wavelet-Fisz 变换的X射线脉冲星信号的估计方法. 根据X射线脉冲星信号特性建立了信号模型,推导了 Wavelet-Fisz 变换理论,利用该变换将X射线脉冲星信号逼近于高斯分布,对变换后的信号数据进行估 计.对大量 RXTE 的实测数据进行分析,结果表明在 Wavelet-Fisz 变换下能获得较好的估计性能,且耗 时小,有利于X射线脉冲星导航的工程应用.

关键词:光子序列;降嗓;Wavelet-Fisz 变换;X 射线脉冲星信号;方差稳定变换 中图分类号:TP911.7 文献标识码:A 文章编号:1004-4213(2014)12-1204001-6

De-noising of X-ray Pulsar Signal Based on Wavelet-Fisz Transformation

LIU Xiu-ping¹, JING Jun-feng¹, SUN Hai-feng², HAN Li-li³

(1 Electronics and Information College, Xi'an Polytechnic University, Xi'an 710048, China)
(2 School of Aerospace Science and Technoloy, Xidian University, Xi'an 710071, China)
(3 Xi'an Traffic Engineering Institute, Xi'an 710065, China)

Abstract: As the phase of X-ray pulsar signal is hard to obtain accurately because of low signal noise ratio, a method of estimation based on Wavelet-Fisz transformation for X-ray pulsar signal was proposed. The signal of X-ray pulsars were folded by an enormous number of photon events. The signal model of X-ray pulsar was constructed. The Wavelet-Fisz transformation was derived. The signal of X-ray pulsars were preprocessed to Gaussian distribution by Wavelet-Fisz transformation, then the approximated signal was estimated. Several observation data of RXTE were analyzed, the results show the proposed method has a good performance of estimation, with low overhead of time under Wavelet-Fisz transformation, and is suitable for engineering application of X-ray pulsar navigation.

Key words: Photon sequence; Noise reduction; Wavelet-Fisz transformation; X-ray pulsar signal; VST OCIS Codes: 040.7480; 250.0040; 120.1880; 070.0070; 340.0340

0 引言

全球导航系统(Global Navigation Satellite System,GNSS)和深空网络(Deep Space Network, DSN)都依赖于大量地面通信装置,不利于飞行器的自 主实时导航.脉冲星是周期性旋转且辐射多种频段电 磁波的星体,近年来,基于X射线脉冲星的导航成为研 究热点^[1].X射线脉冲星信号的降噪和估计是X射线 脉冲星自主导航的前提. X射线脉冲星的原始信号由一系列光子到达探测器的时间序列组成.光子到达时间(Time of Arrival, TOA)是X射线脉冲星导航的基本观测量^[2],经过TOA时间尺度转换后,光子事件叠加形成脉冲轮廓. 探测X射线光子是计数过程,服从泊松(Poisson)过程,其噪音建模服从Poisson模型.Poisson噪音不同于加性的高斯噪音^[3],其不具有同方差性,难以直接利用适合于高斯噪音的算法对Poisson噪音降噪.一般采用"漂白"Poisson噪音的方法,即将Poisson噪音预处理

基金项目:国家自然基金(No. 61301276)和西安工程大学博士启动基金(No. BS1412)资助

第一作者:刘秀平(1981-),男,讲师,博士,主要研究方向为 X 射线脉冲星信号处理、空间信息网络及导航技术. Email:liuxiuping8@126.com **收稿日期**:2014-04-21;**录用日期**:2014-08-07

为高斯噪音后,再利用高斯降噪.常用的"漂白"方法 有 Anscombe 变换^[4]和 Fisz 变换^[5]. 文献 [6] 利用小波 研究了脉冲星的降噪方法,选择合理的阈值策略,滤除 脉冲星信号中的噪音.理论上,确定小波系数的统计分 布,在相应分布下确定出不同的阈值,则能获得较好的 信号,但算法的开销较大,不利于资源受限的空间飞行 器. Bayesian 多尺度模型对脉冲星信号的估计有较好 的性能^[7],但并不适合于信噪比(Signal Noise Ratio, SNR)很低的信号. Fisz 变换不仅可有效逼近高斯分 布,而且可与不同小波基结合得到了较好的效果[8-9]. 在评价算法性能时,数据来源主要有仿真模拟数据[10] 和实测数据. 文献「11] 对通过地面模拟装置产生的 X 射线脉冲星数据进行了大量研究,验证了 X 射线脉冲 星的辐射机制.事实上,仿真模拟数据难以客观地反映 宇宙空间环境的复杂性,需要通过对实测数据的分析, 寻求兼顾计算复杂度和估计性能的解决方法.本文基 于 Wavelet-Fisz 变换对 X 射线脉冲星信号估计,通过 大量实测数据验证了算法的可行性,并研究了该变换 与其它降噪算法相结合的估计性能.

1 X射线脉冲星信号模型

X 射线脉冲信号是非齐次 Poisson 过程,估计强度 函数是信号处理的核心问题. 建立 X 射线脉冲星的光 子到达时刻序列数学模型.

假设在观测时间(T_b,T_e)内,探测到 X 射线脉冲 星 TOA 的序列为

$$T_{\rm b} \leqslant t_0 < t_1 < t_2 < \cdots < t_{\rm m} \leqslant T_{\rm e} \tag{1}$$

式中, t_i , $i \in Z$ 为第i个光子到达的时刻,是一随机变量. 假设 v_0 , v_1 ,…, v_{n-1} 为相应间隔内光子到达事件的 累积和,则 v_i 服从参量为 $\lambda(t)$ 的非齐次泊松过程,且 $\lambda(t) > 0$ 为光子强度.

将任意观测时间等间隔划分为n个 bin 块,即 $I_i \equiv \left(\frac{i}{n}(T_e - T_b), \frac{i+1}{n}(T_e - T_b)\right)$.任意 I_i 期间,光子到达数量 $v_i = k$ 服从参量为 Λ_i 的 Poisson 分布,即

$$P(v_i = k) = \frac{(\Lambda_i)^k \exp((-\Lambda_i))}{k!}$$
(2)

式中, $\Lambda_i = \int_{I_i} \lambda(t) dt$ 为泊松过程的累积率.可见, v_i 是 来自参量为 Λ_i 的泊松分布的值,X 射线脉冲信号估计 的关键是估计参量 Λ_0 , Λ_1 ,…, Λ_{n-1} .

2 基于 Wavelet-Fisz 变换的降噪模型

假设 X 射线光子计数为 $v = (v_0, v_1, \dots, v_{N-1})$,其 对应变换为 $u = (u_0, u_1, \dots, u_{N-1})$, F_w 为 Wavelet-Fisz 变换的操作因子,则 Wavelet 变换表示为

 $u = F_w v$

式中,Fw 是一种非线性运算.基于 Wavelet-Fisz 变换

的 X 射线脉冲星信号估计算法为:

Step 1: 对观测的 X 射线脉冲星信号 v 做 Wavelet-Fisz 变换 $u = F_w v$,经过变换后,具有 Poisson 特性的 X 射线脉冲信号具有方差稳定的特性.

Step 2:对 u 做降噪处理 $D(u) = D(F_w v)$,得到信号的逼近部分 $F_w \Lambda$. D 为适合于高斯特性的降噪操作.

Step 3: 对 $F_w \Lambda$ 做 Wavelet-Fisz 逆变换,即 F^{-1} ($F_w \Lambda$),得到估计的强度.

利用非标准化滤波器 $\{1/2, -1/2\}$ 和 $\{1/2, -1/2\}$, 将信号 v分解为逼近部分 $a_n = (v_{2n} + v_{2n-1})/2$ 和 细节 部分 $d_n = (v_{2n} - v_{2n-1})/2$,其中, $n = 0, 1, \dots, N/2 - 1$.

当
$$f_n = \begin{cases} 0 & a_n = 0 \\ d_n / \sqrt{a_n} & \text{otherwise} \end{cases}$$
,则有
$$Z_n = \begin{cases} 0 & V_{2n} = V_{2n+1} = 0 \\ (V_{2n} - V_{2n+1}) / (\sqrt{2}\sqrt{V_{2n} + V_{2n+1}}) & \text{otherwise} \end{cases}$$
(3)

式中, v_k 是 V_k 的实现值. 当(v_0 , v_1 ,…, v_{N-1})独立时, Λ_{2n} , $\Lambda_{2n+1} \rightarrow (\infty,\infty)$ 和 $\Lambda_{2n}/\Lambda_{2n+1} \rightarrow 1$,则有 $Z_n \rightarrow N(0,1/2)$. 因此,细节部分的系数替代为 $d_n = f_n$,使得原信号的噪 音逼近于高斯噪音 N(0,1/2),噪音部分仍存在于变换 后的细节部分中. 经过变换后的细节部分更接近高斯 噪音,逼近部分则保持不变. 可见,只有 Wavelet-Fisz 变换后的噪音部分尽最大程度的逼近于高斯噪音,才 能保证 X 射线脉冲星信号降噪和估计性能.

假设小波函数 $\varphi^{j,k}$ 和尺度函数 $\varphi^{j,k}, j=0,1,\dots,J-1, k=l2^{J-j}, l=0,1,\dots,j, \varphi_n^{j,k}, \varphi_n^{j,k}$ 表示为

$$\varphi_{n}^{j,k} = \begin{cases}
0, & n < k \\
1, & k \leq n < k + 2^{J-j-1} \\
-1, & k + 2^{J-j-1} \leq n < k + 2^{J-j} \\
0, & k + 2^{J-j} \leq n
\end{cases}$$

$$\varphi_{n}^{j,k} = \begin{cases}
0, & n < k \\
1, & k \leq n < k + 2^{J-j} \\
0, & k + 2^{J-j} \leq n
\end{cases}$$
(4)

假定 $\varepsilon_J(n) = (\varepsilon_J^0(n), \varepsilon_J^1(n), \dots, \varepsilon_J^{J^{-1}}(n)) 为 n$ 的二 进制表示形式,则相应的 Wavelet-Fisz 变换 $u = F_w v$ 为

$$u_{n} = \frac{\langle \varphi^{0,0}, v \rangle}{N} + \sum_{j=0}^{J-1} (-1)^{\epsilon_{j}^{j}(n)} 2^{\frac{j-1}{2}} c_{j,J,n}(v)$$
(6)

其中

$$c_{j,J,n}(v) = \begin{cases} \frac{\langle \psi^{j, |n/2^{l^{-j}}|2^{l^{-j}}}, v \rangle}{\sqrt{\langle \varphi^{j, |n/2^{l^{-j}}|2^{l^{-j}}}, v \rangle}}, & \langle \varphi^{j, |n/2^{l^{-j}}|2^{l^{-j}}}, v \rangle > 0\\ 0, & \text{otherwise} \end{cases}$$

在 Wavelet-Fisz 变换下,当 λ→∞和 λ/N→0,有 cor(U_m, U_n)→0,说明变换后的系数间逼近不相关.当 $\lambda/N \rightarrow 0$ 时, $\langle \varphi_{0,0}, v \rangle/N \rightarrow 0$; 当 $\lambda/N \rightarrow (\infty, \infty)$ 时, $\sum_{j=0}^{J-1} (-1)^{\epsilon_j(m)} 2^{(j-D)/2} c_{j,J,n}(v) \rightarrow N(0,1)$.显然, Wavelet-Fisz 变换后的信号为高斯噪音可利用适合于高斯噪音 的降噪方法.

3 算法结果与分析

评价基于 Wavelet-Fisz 算法的 X 射线脉冲星信号 估计性能,需要获取大量的 X 射线脉冲星数据来支持. 美国 航空 航 天局 NASA 发射 RXTE (Rossi X-ray Timing Explorer) 探测器对不同赤纬、不同赤经的近 400 个 X 射线脉冲星进行了观测(图 1),而且提供了不 同观测时间、观测间隔的数据(图 2).这些原始观测数 据对研究 X 射线脉冲星信号极具科研价值.可用作导 航的 X 射线脉冲星必须流量高且周期短,被认可的约 20 颗左右^[12].本文选取流量较大的 X 射线脉冲星的观 测数据来评价算法的估计性能,如 PSR B0531+21 和 PSR B1509-58,其流量为 1.54 和 1.62×10⁻² ph・ cm⁻² · s⁻¹. RXTE 卫 星 上 的 正 比 计 数 阵 列 (Proportional Counter Array, PCA)探测器的时间分辨 率高达 1 μ s,能获取较高准确度的 TOA. 通过 NASA

图1 X射线脉冲星分布

Fig. 1 Plot of the X-ray pulsars in Galactic longitude and latitude

图 2 RXTE 对 X 射线脉冲星的观测时间 Fig. 2 Plot of observation time of the X-ray pulsars using RXTE

的 Heasoft v6.11.1 平台提取的 PCA 观测数据作为实 验数据.

信号降噪和估计的评价方法都是假设原始信号或 原始图像已知的,而来自于 X 射线脉冲星的原始信号 是未知的.为了客观评价信号处理的性能,假设较长时 间叠加后获得的高信噪比的脉冲轮廓作为 X 射线脉冲 星的原始信号,较短时间内获得的低信噪比的脉冲轮 廓作为待降噪和待估计的信号.显然,短时间获得的信 号是通过对长时间观测的信号增加噪音而得.通过对 RXTE 观测的大量归档数据分析处理,选取了最长观 测时间和最新观测的两组数据作为实验数据,参量如 表 1,1 和 3、2 和 4 分别为 PSR B0531+21、PSR B1509-58 的观测数据.这 4 组数据的观测时间和 SNR 均不 同,能更好地说明算法的普适性.

表 1 PSR B1509-58 和 PSR B0531+21 的 4 组观测数据 Table 1 The 4 observation data for PSR B1509-58 and PSR B0531+21

	Observation ID	Start time	Efficient time/s	Sum of photons	Events/($\times 10^4$)
1	10402-01-01-00	961002 14:55:28	32 218	14 563 655	10
2	94803-01-11-02	091024 20:31:28	25 918	2 003 870	10
3	96802-01-20-00	111120 19:07:04	1106	10 018 712	10
4	96803-01-12-00	111121 23:44:32	3726	202 575	10

3.1 "高斯化"的性能评价

Anscombe 变换与 Wavelet-Fisz 变换都能将 Poisson信号转换为"近似高斯"信号. Donoho 提出了 Anscombe 变换,其方差稳定性变换^[13]为

$$Au = 2\sqrt{v+3/8} \tag{7}$$

实验数据选取了 PSR B1509-58 脉冲星信号,以 96803-01-12-00 为例(图 3).

分位数-分位数(Quantile-Quantile,Q-Q)图是检验

采样数据与理论假设分布是否一致的方法之一,在统 计信号领域中广泛应用.利用 Q-Q 图验证了 X 射线脉 冲星的信号服从于 Poisson 分布的特性.通过图 4(a) 可看出 Anscombe 变换逼近于高斯分布,尤其在中间 有好的逼近,但在分位数较低时,有明显的阶梯变换. 图 4(b)表明 Wavelet-Fisz 很连续地逼近于高斯分布, 比 Anscombe 变换有更好的逼近.可见,Wavelet-Fisz 变换比 Anscombe 变换有更好的"高斯化"能力.

图 4 Anscombe 变换和 Wavelet-Fisz 变换的"高斯化"能力 Fig. 4 Gaussianization for Anscombe and Wavelet-Fisz transformatioin

3.2 强度估计性能分析

分析了基于 Wavelet-Fisz 变换的不同估计方法的 性能,这些估计方法都以 Wavelet-Fisz 变换为前提,即 Step 1 和 Step 3 的操作是相同的,只有在 Step 2 中使 用不同的降噪方法.由于 Wavlet-Fisz 变换中,有 $F_wS \neq SF_w(S)$ 为平移操作因子),不具有平移不变性,因 此,只对整个算法做一次循环平移操作更合理,即在 Step 1 前作一次平移,在 Step 3 后再移回去,得到一次 估计.将多次循环平移获得的估计进行平均得到最终 估计.长度为 N 的数据最多循环平移 N 次,而使用 N/10次的循环平移可得到较好的估计结果. 比较了 Wavelet-Fisz 下通用硬阈值方法(U)^[14]、 Cross-Validation 选择阈值的方法(CV)^[15]和贪婪树算 法(Greedy Tree algorithm)的降噪方法(GT)^[16]的估计 性能,分别表示为 F&U,F&CV,F>.在此基础上, 研究了它们联合的估计性能.

实验中被估计信号为短时间内获取的光子事件的 脉冲轮廓,所用的光子事件均为100 000 个构成的脉 冲轮廓.由于观测时间越长,SNR 越高,从表1看出,第 3 组比第 1 组的 SNR 高,第 4 组比第 2 组的 SNR 高. 利用表 1 中的实验数据,分析了基于 Wavelet-Fisz 变 换对 X 射线脉冲星的信号降噪性能. 从表 2(其中加粗 的数据性能较好)看出,当被估计的 X 射线脉冲星信号 的 SNR 较高时(即第1和4组数据),贝叶斯多尺度模 型 (Bayesian Multiscale Model, BMSM)^[17] 算法比本 文的算法效果好,主要原因是前者充分利用了数据的 先验信息,虽然本文算法 F&U 和混合算法 (F&U 和 F>)也获得了较好的效果,但稍差于 BMSM 算法. 原因是由于被估计的信号 SNR 较高, Wavelet-Fisz 变 换增加了信号的误差,使得性能略有下降,第2组和第 4 组数据的 SNR 较低,本文算法比 BMSM 的峰值信噪 比 (Peak SNR, PSNR) 都高, 主要是由于信号的噪音太 强,使得 BMSM 算法失效,无法估计出信号.从而看 出,本文提出 Wavelet-Fisz 算法在 SNR 较低时,可得 到更优的效果,同时当 SNR 较高时,也可得到与 BMSM 相接近的效果.

表 2 Wavelet-Fisz 算法与其他算法 PSNR 比较 Table 2 The PSNR comparison

Method	1	2	3	4	
F&U	30.98	13.59	26.17	14.27	
F&CV	27.79	15.56	19.19	14.27	
F>	28.78	12.76	23.38	14.1	
F&U F&CV	28.71	13.31	24.14	13.64	
F&U F>	28.71	13.24	27.49	13.40	
F&CV F>	27.35	14.79	22.56	13.64	
BMSM	33.26	12.41	28.80	13.37	

累积均方误差(Normalized Mean Integrated Square Error, NMISE)为

NMISE = $E\left[\sum_{i=0}^{N}\left(\left(\frac{h}{y_i} - y_i\right)^2/y_i\right)/N\right]$

式中,y为原始信号,y为估计信号.通过 NMISE 评价 了算法的性能(表 3,其中加粗的数据性能较好),可知 本文算法比 BMSM 算法获得了更好的性能.

为了更直观地分析算法的性能,分别取 PSR B0531+21(表1第1组数据)和 PSR B1509-58(表1第2组数据)数据为例,比较了基于 Wavelet-Fisz 算法与 BMSM 的估计效果.由于 F&CV 对不同 SNR 的估计性能都比较好,图5和图6比较了 F&CV 和 BMSM 估计的信号.从图5看出,F&CV 较好地估计出了

PSR B0531+21 信号,由于 Fisz 变换增加了误差,使得 主峰两侧产生 2 个尖峰,但并不影响 X 射线脉冲星的 相位估计.从图 6 看出,F&CV 和 BMSM 都估计出了 PSR B1509-58 信号的脉冲轮廓,并且 F&CV 更接近于 PSR B1509-58 的理论标准轮廓,而 BMSM 受噪音影响 较大,导致峰值的右侧有一个波峰.

从 PSNR 和 NMISE 看出,本文算法能较好地估计 X 射线脉冲星信号,并且比 BMSM 的时间复杂度 要低.

表 3 Wavelet-Fisz 算法与其他算法的 NMISE 比较 Table 3 The performance comparison of NMISE

Method	1	2	3	4
F&U	3.98e-6	8.94e-5	1.55e-5	8.48e-5
F&-CV	7.82e-6	5.82e-5	2.89e-5	8.48e-5
F&-GT	7.72e-6	1.06e-4	3.32e-5	9.39e-5
F&U F&CV	3.29e-6	9.54e-5	1.40e-5	1.11e-4
F&U F&GV	3.29e-6	9.71e-5	1.15e-5	1.14e-4
F&CV F>	5.35e-6	6.73e-5	1.65e-5	1.11e-4
BMSM	1.53e-6	1.18e-4	7.91e-5	1.10e-4

图 5 各种算法对 PSR B0531+21 的估计 Fig. 5 The estimation of various methods for PSR B0531+21

图 6 各种算法对 PSR B1509-58 的估计 Fig. 6 The estimation of various methods for PSR B1509-58

4 结论

本文研究了基于 Wavelet-Fisz 变换的 X 射线脉冲 星的信号估计方法,提出的方法将 Poisson 噪音特性的 X 射线脉冲星信号变换为具有高斯特性的信号,利用 适合于高斯特性的方法对变换后的信号进行降噪和估 计.通过 RXTE 探测的 X 射线脉冲星的实测数据分析 了 Wavelet-Fisz 变换的估计性能,结果表明该方法在 不同 SNR 下都有较好的估计性能,缩短了计算时间, 并且拓展了 X 射线脉冲星信号处理的研究空间.

参考文献

- [1] SHEIKH I S. The use of variable celestial X-ray sources for spacecraft navigation[D]. Maryland: University of Maryland, 2005.
- [2] ZACHARY T, ROUMMEL F, REBECCA M. This is SPIRAL-TAP: sparse poisson intensity reconstruction algorithms-theory and practice [J]. *IEEE Transactions on Image Processing*, 2012, 21(36): 1084-1096.
- [3] CHARLES C, RASSON J. Wavelet denoising of Poissondistributed data and applications[J]. Computational Statistics & Data Analysis, 2003(43): 139-148.
- [4] ANSCOMBE F. The transformation of Poisson, binomial and negative binomial data[J]. Biometrika, 1948, 35: 246-254.
- [5] FISZ M. The limiting distribution of a function of two independent variables and its statistical application [J]. Colloquium Mathematicum, 1955, 3: 138-146.
- [6] GAO Guo-Rong, LIU Yan-Ping, PAN Qiong. A differentiable thresholding function and an adaptive threshold selection technique for pulsar signal denoising[J]. Acta Physics Sinica, 2012, 61(13): 139701. 高国荣,刘艳萍,潘琼. 基于小波域可导阈值函数与自适应阈

值的脉冲星信号消噪[J]. 物理学报, 2012, 61(13): 139701.

- [7] KOLACZYK E. Bayesian multi-scale models for poisson processes [J]. Journal of the American Statistical Association, 1999, 94(447): 920-933.
- [8] PIOTR F, NASON G. A wavelet-Fisz algorithm for Poisson intensity estimation [J]. Journal of Computational and Graphical Statistics, 2003, 13(3): 621-638.
- [9] PIOTR F. Haar-Fisz methodology for interpretable estimation of large, sparse, time-varying volatility matrices [C]. Hernando: Universite Catholique de Louvain, 2011.
- [10] SU Zhe, XU Lu-ping, WANG Ting. X-ray pulsar-based navigation semi-physical simulation experiment system[J]. Acta Physics Sinica, 2011, 60(11): 119701. 苏哲,许录平,王婷. X 射线脉冲星导航半物理仿真实验系统研究[J]. 物理学报, 2011, 60(11): 119701.
- [11] SHENG Li-zhi, ZHAO Bao-sheng, ZHOU Feng, et al. Performance of the detection system for X-ray pulsar based navigation[J]. Acta Photonica Sinica, 2013, 42(9): 1071-1076. 盛立志,赵宝升,周峰,等. X 射线脉冲星导航探测器性能研

盛立志,赵宝升,周峰,等.X 射线脉冲星导航探测器性能研 究[J].光子学报,2013,**42**(9):1071-1076.

- SHEIKH I, GOLSHAN A, PINES D. Absolute and relative position determination using variable celestial X-ray sources
 [C]. Advances in the Astronautical Sciences, 2007, 128: 855-874.
- [13] MARKKU M, ALESSANDRO F. Optimal inversion of the generalized anscombe transformation for poisson-gaussian noise[J]. IEEE Transactions on Image Processing, 2013, 22 (1): 91-103.
- [14] DONOHO D, JOHSTONE I. Ideal spatial adaption by wavelet shrinkage[J]. Biometrika, 1994, 81: 425-455.
- [15] NASON G. Wavelet shrinkage using cross-validation [J]. Journal of the Royal Statistical Society B, 1996, 58: 463-479.
- [16] BARANIUK R. Optimal tree approximation with wavelets[C]. SPIE, 1999, 3813: 206-214.